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Abstract-The effects of waves occurring on a falling condensate film on heat transfer have been studied 
by direct computer simulation. The time-dependent Navier-Stokes and energy equations, as well as the 
Poisson equation for pressure, have been solved for a condensate film of Rl 1 from the leading edge to 
0.6 m with finite difference schemes and non-periodic boundary conditions The waves, which have amplitude 
of the order of the film substrate, were observed in the region of 200 < Re < 455, and the heat transfer 
coefficient 1s increased by about 60%, while it is identical with the Nusselt theory at Re < 120. In this 
simulation range the enhancement of the heat transfer is attributed to the decreasing time averaged film 

thickness due to waves. and the disturbance effects of the waves are small. 

II. INTRODUCTION 

Many experimental data and theoretical studies have 
been presented on the heat transfer of a vertically 
falling condensate film. Although most experimental 
data show higher values than the Nusselt theory for a 
laminar condensate film [l] due to waves on the film 
surface, very few studies have considered the relation 
between the heat transfer and flow dynamics. 

Experimentally obtained average heat transfer 
coefficients of the condensing water vapor [2-4] have 
the same values obtained from the Nusselt theory in 
the region of Re < 30, and the heat transfer coeffi- 
cients become higher than those given by the Nusselt 
theory for Re > 30. The experimental data are about 
50% higher at Re = 1000. Selin [5] conducted exper- 
iments with pure vapors of butanol and propanol 
in the region of 400 < Re < 1000; his data for heat 
transfer coefficients are also 50% higher than the pre- 
dictions of the Nusselt theory. Struve [6] used a 
measurement cell size 0.05 m in his experiment on an 
evaporating falling film of Rll and obtained local 
heat transfer coefficients which are already about 20% 
higher than the one of the Nusselt solution at Re > 50. 
Chun and Seban 1171 measured the local heat transfer 
coefficient of evalporating water film on a 0.305 m 
cell with a 0.305 m unheated entry length. The data 
indicate about 60% higher heat transfer coefficient at 

iAuthor to whom correspondence should be addressed. 

300 < Re < 1000 than the Nusselt theory. Uehara and 
Kinoshita [8] made experiments on wavy and tur- 
bulent condensate films of Rll, R113 and R123 on 
a vertical surface 3 m in length, and they proposed 
correlations for the local heat transfer coefficient. 

Hirshburg and Florschuetz [9, lo] established a lin- 
earized theory for a falling film without condensation 
in a coordinate system moving with the waves by 
assuming periodicity and a parabolic profile. Two 
asymptotic wavy flow states were found, namely the 
so-called sinusoidal wave and intermediate wave solu- 
tion. The sinusoidal wave shape has a distortion 
factor, which is defined as the ratio of the actual fre- 
quency to the most unstable frequency, off+ = 1; for 
the intermediate wavef+ varies from 1 to 0.35. The 
theory provides the length, celerity and amplitude of 
the wave as well as the Nusselt number of different 
wave shapes. The calculated value was consistent with 
experimental data. 

The purpose of this unsteady computer simulation 
of the condensate falling film is to investigate the 
relation between the film flow dynamics and the heat 
transfer coefficient. The unsteady basic equations, 
namely the Navier-Stokes equation, the energy equa- 
tion and the Poisson equation for pressure, and the 
computational method have been explained and the 
flow dynamics of the falling condensate film were dis- 
cussed in part I [ 111. In the present study temperature 
fields have been solved in addition to velocity fields 
and the heat transfer coefficient of a wavy condensate 
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~~lcg&l) 
mass flow rate of film per unit film width 

[kg m -‘s-V 
heat transfer coefficient [W mm2 K-‘1 
mesh point index number in the x- 
direction 
biggest mesh point index number in the 
x-direction at the outflow 
mesh point index number in the y- 
direction 
biggest mesh point index number in the 
y-direction, beyond the surface 
index number of the surface point 
thermal conductivity of liquid 
[w mm’ K-‘1 
latent heat [J] 
condensing rate per unit area 

[kg m -2 s-7 
condensation number, h(v2/g)“3/k 
pressure 
Prandtl number 
film Reynolds number, 4G/p 
Reynolds number at the outflow 
location, u,&/v 
time 
temperature 
velocity parallel to the condensation 
plate 

V 

We0 
X 

Y 

velocity perpendicular to the 
condensation plate 
Webernumber, p,u&,/a 
coordinate parallel to the condensation 
plate 
coordinate perpendicular to the 
condensation plate. 

Greek symbols 
6 film thickness 

p dynamic viscosity [kg s mm ‘1 
V kinetic viscosity [m’ SC’] 

P density of the liquid [kg m-‘1 
d surface tension [N m-‘I. 

Subscripts 
1 liquid 
0 standard value at the outflow location 
S surface 
V vapor 
W wall 
X local value at the position x. 

Superscripts 
* parameter having its dimension 
_ time-averaged value. 

film has been obtained. The important points of this 
computer simulation are as follows : 

(1) the simulation was performed for the con- 
densate film in the region from the leading edge of 
condensation to the occurrence of big merging waves ; 

(2) the unsteady basic equations were solved by 
time-step advance with a finite difference method 
without a turbulence model, which allows the simu- 
lation of the transition from laminar to turbulent 
flow ; 

(3) no periodic and as few as necessary fixed bound- 
ary conditions were employed. 

ness a0 at the outflow location of the calculation field 
obtained from the Nusselt theory, the saturation tem- 
perature T, and the wall temperature T,. The coor- 
dinate and velocities parallel and perpendicular to the 
wall are x = x*/6,, y = ~*/a,,, u = u*/uO and v = v*/u,,, 
respectively. The pressure is p = p*/(p,&) and the 
time t = t*/(&,/uo). The temperature is T = 

(T* - Tw)/(Ts- Tw). 
The continuity equation and the Navier-Stokes 

equations are 

au+!%0 
ax ay 

2. FUNDAMENTAL EQUATIONS 

In the previous study [l I] the two-dimensional 
time-dependent Navier-Stokes equations, the Poisson 
equation for the pressure and the energy equation 
without the convection terms were solved by finite 
difference schemes. In the present study the two- 
dimensional time-dependent energy equation is used 
without neglecting the convection terms. Except for 
the energy equation, the same equations are used in 
this simulation. The basic equations are non-dimen- 
sionalized with the surface velocity u,, and film thick- 

(3) 

where Re, is the Reynolds number at the outflow 
position obtained from the Nusselt theory and Fro is 
the Froude number. The Poisson equation to solve 
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the pressure field is derived from the Navier-Stokes 
equations (2) (3) as follows : 

The energy equation is 

In this calculation fixed boundary conditions are 
given only for indispensable values, which are vel- 
ocities in the x and y directions on the plate surface, 
temperatures on the plate surface and the condensate 
film surface, and velocities, film thickness and tem- 
perature at a smal!l part of the leading edge of the plate, 
values of which are given from the Nusselt theory. 

Boundary conditions for the velocities and tem- 
perature on the plate surface 0, = 0) and the film 
surface 0, = S) are as follows. 

y=O:u=O a=0 T=O (7) 

y=6:u=u, u=u, @- 
s-O T=l (8) 

where u, and us, which are x and y component vel- 
ocities at the film surface, are calculated using the 
Navier-Stokes equations. With the assumption that 
the wavelength is much bigger than the film thickness, 
the pressure at the film surface ps is calculated with 
the following equation : 

~s-p”)+~~+jg~=O (9) 
cl 0 

where pV is vapor pressure. The kinematic boundary 
condition for the falling film surface with con- 
densation is 

(10) 

where 6 is film thickness and liz is condensing rate per 
unit area. 

For the bound.ary condition at the outflow, the 
method of Shapiro and O’Brien [13] was chosen. In 
this method a linear extrapolation is used in order to 
follow the Lagrange trajectory of a particle and to get 
outflow boundary values. 

3. NUMERICAL SIMULATION METHOD 

The computer simulation was performed for a con- 
densate film of R 11 on a vertical wall in the region 
from the leading edge to 0.6 m. The calculations were 
carried out in a rectangular region on the staggered 

grid points. The grid for the velocity u was placed on 
the wall surface and the grid for the velocity u was put 
before and behind the wall surface. 

The timestep advance of the Navier-Stokes equa- 
tion and the energy equation was made with the Euler 
explicit scheme. For the convective term, the third 
order upwind scheme proposed by Kawamura and 
Kuwahara [12] was used. The central difference sch- 
eme was employed for all the other terms. Velocities 
of x and y components, film thickness and tem- 
perature of the first three rows of the staggered grid 
have to be given from the Nusselt theory because the 
third order upwind scheme requires two adjoining 
points to the center point in every direction. For the 
same reason, the third order upwind scheme cannot 
be applied at the nearest points to the surface j = J, 
the adjacent point j = J- 1, and the nearest points to 
the outflow boundary i = I- 1. At the points j = J- 1 
and i = I- 1, the donor cell method was applied 
instead of the third order upwind scheme. The velocity 
u(i, J) was interpolated by a parabolic curve deter- 
mined from the velocity on the surface u,(i) and the 
two other velocities u(i, J- 1) and u(i, J-2). The 
velocity v(i, J) was obtained from the continuity equa- 
tion. The temperature T(i, J) was calculated in the 
same way as u(i, J). The values of the velocities and 
temperature at the wall surface are given as follows 

u(i,O) = 0 (11) 

u(i, - 1) = -u(i, 1) (12) 

v(i, 0) = - u(i, 1) (13) 

T(i,O) = 0 (14) 

T(i, - 1) = - T(i, 1). (15) 

The Poisson equation for the pressure was solved 
using the Successive Over-Relaxation (SOR) method. 
Since the boundary conditions are complicated, an 
analytical calculation for the relaxation factor cannot 
be done. The relaxation factor was first calculated for 
Neumann boundary conditions and, by varying the 
factor in the real field slightly, the one with the fastest 
convergence turned out to be [ = 1.66. The SOR iter- 
ation was stopped when the pressure difference 
between two iteration step was smaller than lo-*. 

Because of the staggered grid, only the pressure of 
the outermost points cannot be calculated by SOR. 
Therefore, the pressure at the outermost boundary 
points on the wall surface p(i, 0) were obtained by 
calculating first the pressure derivative ap/dy at p(i, 
1) with the y-direction Navier-Stokes equation (3) 
neglecting au/at and a2v/ax2. Then, the pressurep(i, 0) 
was linearly extrapolated from the pressure p(i, 1) 
with the calculated pressure derivative. The surface 
pressure p.(i) was calculated by equation (9), and the 
pressure p(i, J) was linearly interpolated from the 
surface pressure pS(i) and p(i, J- 1). The pressure at 
the outflow boundary p(Z, j) was obtained with the 
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backward difference formula by using 
p(Z-3,j),p(Z-2,j) andp(Z-1,j): 

Mj) = P(I- 1 ,A 

the points 

+ ]3p(I- 1,j) -4p(Z- 2,j) +p(Z- WIP. (16) 
The displacement of the surface was calculated after 

every time step from the surface velocity by using 
Ax, = u,At, Ay, = v,At and from the increase of the 
film thickness due to the condensation. 

As for the initial condition, the film thickness 6(i), 
the velocities u(i j) and u,(i), and the temperature T(i, 
j) were provided from the Nusselt theory [l]. The 
velocity v(i, j) was set to zero. The pressure p(i, j) is 
the same as the surface pressure ps (i) calculated from 
equation (9). 

Starting from the initial conditions, the calculations 
were first done to steady state. The steady state is 
reached when on the one hand the time-averaged vel- 
ocities and film thickness as well as the root mean 
square (rms) velocities are not changing any more. On 
the other hand, when the simulation time is bigger 
than the traveling time of a particle on the surface 
from the beginning to the outflow point, results were 
then taken from calculation sets of a real time of one 
second. 

4. RESULTS 

Propagations of the waves on the film surface are 
shown in Fig. 1. The lines are shown at every l/16 s. 
In the abscissa, time-averaged film Reynolds number 
Re is also indicated at some locations. As reported in 
the previous paper [1 l] small ripple waves appear at 
the line of inception and it is not a fixed location. The 
amplitude of the wave grows rapidly from the small 
amplitude of ripple waves to the same order of the film 
substrate and after the strong growth the amplitude 
increases only slightly. 

Figure 2 shows the comparison between the present 
result and the Nusselt theory in the condensation 
number NM vs the film Reynolds number Re diagram. 
Nu and Re of the simulation result are time-averaged 
values. Experimental data for Rll by Uehara and 
Kinoshita [8] are also plotted in this figure. In the 

Re 
Fig. 2. Time-averaged condensation number of the present 
simulation and comparison with the Nusselt theory and 

experiments. 

region of Re < 120, where the film flow is laminar and 
the film surface is smooth or has only small ripple 
waves, NM of the present result has the same value as 
obtained from the Nusselt theory. At Re = 120, Nu 
of the present result becomes bigger than that of the 
Nusselt theory and the difference increases strongly 
until Re = 200. In the region of Re > 200, Nu of the 
present result decreases slightly and agrees well with 
the experimental data. For the experimental results, 
Nu is bigger than the Nusselt theory in the range 
Re > 50. The earlier increase of the experimental data 
from the simulation result may be caused by dis- 
turbance from the outside of the experimental appar- 
atus. As mentioned before, the line of inception is 
moving and it will be able to change with an artificial 
disturbance. The starting point of increasing Nu is, 
therefore, not so important at this stage. 

Variation of the heat transfer coefficient in the x- 
direction is indicated in Fig. 3. In this figure the pre- 
sent result, the Nusselt theory and k/S are plotted for 
comparison. 2 is the time-averaged film thickness of 
the simulation results and k/8 represents the heat 
transfer coefficient of a laminar film with thickness 8. 
In the range of 2000 < x < 4413, which corresponds 
to 214 < Re < 455, the heat transfer coefficient of the 
present result is about 1.5-l .7 times that of the Nusselt 
theory. In the same range of x, k/8 is about 1.4-1.6 
times that of the Nusselt theory. These facts mean 
that the heat transfer coefficient is enhanced mainly 

I I I I 

213 315 415 
Re 

Fig. 1. Instantaneous film shape in the whole calculation region every l/16 s after the steady state. 
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Fig. 3. Variation of time-averaged heat transfer coefficient in 
the x-direction. 

by the decrease of the mean film thickness and the 
disturbance effects of waves are small. 

The instantaneous velocity and temperature fields 
in two different lo’cations, which are 895 < x < 1175 
and 3 190 < x < 3470, are displayed in Fig. 4a-d. The 
velocity vectors are shown in Fig. 4a and c, and the 
contour lines of temperature are shown in Fig. 4b 
and d. The influence of the waves on the velocity field 
reaches about y = 0.5 for the small ripple wave in Fig. 
4a, and about y = 0.2 for the big waves in Fig. 4~. As 
reported in the previous paper [ 111, although the wave 
amplitude is already big compared to the substrate 
thickness, the waves are still not roll waves. In Fig. 4b 
and d, the peaks of the contour lines near the wall 

1.6v I I I ‘J L6,...,,.,..,....,.,,.,,...,, ,,,‘,,,, 

A F l-2 3298 i;j\ 3356 3402 
3 

(c) o.oF J .’ : .I ’ ., I 3200 3300 3400 
x 

surface are upstream compared with the peaks near 
the film surface. The location which has the smallest 
temperature gradient on the plate surface is not the 
same location of the wave crest which has the thickest 
film. This means that the effects of the convection on 
the temperature field cannot be ignored when the wave 
generated on the film surface even if it is not a roll 
wave. 

Figure 5a-d shows the instantaneous velocity pro- 
files at x = 3298, 3339, 3356 and 3402, which cor- 
respond to locations at the wave rear, at the wave 
crest, at the wave front, and at the substrate region, 
respectively. In these figures, the parabolic velocity 
profiles with the calculated surface velocity u,, and the 
velocity profiles of a laminar falling film flow with 
the same film thickness, which is calculated from the 
Nusselt theory and has the surface velocity (z&, are 
also plotted with dotted lines and chained lines, 
respectively. The velocity profiles of the present results 
are approximately similar to the parabolic profiles, 
while it is slightly different at the wave crest. The 
velocities of the present results are smaller than those 
of the Nusselt theory at the wave crest and the wave 
front, and bigger at the wave rear. At the substrate 
region, the present result has approximately the same 
velocity as the Nusselt theory. 

Figure 6aad shows the instantaneous temperature 
distributions at the same locations as Fig 5a-d. The 
linear temperature distributions are also plotted with 
dotted lines. The temperature distributions are convex 
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Fig. 4. Instantaneous velocity and temperature fields : (a) velocity field at 895 < Re < 1175 ; (b) temperature 
field at 895 < Re < 1175 ; (c) velocity field at 3190 < Re c 3470; and (d) temperature field at 

3190 < Re -c 3470. 
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u u 

Fig. 5. Instantaneous velocity profiles : (a) at wave rear x = 3298 ; (b) at wave crest x = 3339 ; (c) at wave 
front x = 3356; and (d) at substrate region x = 3402. 
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Fig. 6. Instantaneous temperature distributions : (a) at wave rear x = 3298 ; (b) at wave crest x = 3339 ; 
(c) at wave front x = 3356; and (d) at substrate region x = 3402. 
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(b) 
T 

1.5r--- 

(c) 

Fig. 7. Time-averaged temperature distributions: (a) at 
Re = 71; (b) at Re = 213 ; and (c) at Re = 415. 

at the wave rear, x = 3298, and concave at the wave 
crest, x = 3339, and are almost linear at the wave 
front, x = 3356, and at the substrate region, x = 3402. 
At the wave crest, the temperature gradient at the wall 
surface is bigger than that of the linear distribution. 
,Although the instantaneous velocity profiles are 
approximately para.bolic, such as laminar flow, the 
temperature distributions are affected by convection 
effects. 

Figure 7a-c shows time-averaged temperature dis- 
tributions for Re = ‘71,2 13 and 415, which correspond 
to the dimensionless distances at x = 494, 1994 and 
3982. Temperature distributions calculated from the 
Nusselt theory are also plotted for the identical Reyn- 
olds numbers. The locations of the time-averaged film 

thickness 8, the maximum and minimum film thick- 
nesses ?I,,, and Bmin are indicated with arrows. For 
Re = 71, the present result is identical to the Nusselt 
theory. For Re = 213 and 415, the calculated results 
have linear distributions below the minimum film 
thickness, and have a bigger temperature gradient at 
the wall surface than for Nusselt theory. 

5. CONCLUSIONS 

A falling condensate film with waves on the vapor- 
liquid interface has been analyzed with the direct com- 
puter simulation. The simulation is conducted for a 
condensate film of Rll on a vertical wall from the 
leading edge to 0.6 m and the film Reynolds number 
reached 455. Waves which have an amplitude of the 
order of the film substrate have been observed at 
200 < Re < 455, however, they are still not roll waves. 
The Nusselt number of the calculated results agrees 
well with experimental data in the wavy region at 
200 < Re < 455, and with the Nusselt theory in the 
laminar region at Re < 120. Although the instan- 
taneous velocity profiles are approximately parabolic, 
such as laminar flow, the instantaneous temperature 
distributions are affected by the convection effects. 
On the other hand, the time-averaged temperature 
distributions are, however, almost linear within the 
minimum film thickness, where liquid is always in 
existence. The enhancement of the heat transfer 
coefficient is attributed mainly to the decreasing of the 
time-averaged film thickness due to the waves and 
the disturbance effects of waves are small. Since the 
computational mesh is too big to capture the small 
turbulence motion and the film Reynolds number is 
small, the turbulence level in the substrate and the 
influence of the turbulence on the heat transfer 
coefficient cannot be indicated, but remain for future 
investigations. 
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